Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Biosci (Landmark Ed) ; 29(1): 31, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38287810

RESUMO

BACKGROUND: Next-generation 5G communication technology involves increasing use of 3-100 GHz wireless bands in population centers. Though still non-ionizing, this implies higher radiation energy vs. existing bands. The range is also shorter, needing more numerous emitters, closer to the user-resulting in higher electromagnetic energy exposure. With no universal consensus regarding exposure risks, there is some concern among the public and the scientific community, following indications that 5G radiation can impact immune function, trigger inflammatory responses, and influence expression of genes affecting protein folding, oxidative stress, tissue/extracellular matrix (ECM) matrix turnover, and more. This work aims at identifying botanical extracts for protection of human skin from these impacts, based on a preliminary cell culture-based model. METHODS: We irradiated human epidermal keratinocytes at 6 GHz, evaluating effects on Interleukin1-α (IL1-α), a key inflammatory cytokine; TIMP metallopeptidase inhibitor 1 (TIMP1), shown to inhibit collagenase; Angiopoietin-like protein 4 (ANGPLT4), which plays a role in wound healing and epidermal differentiation; and S100 calcium-binding protein A9 (S100A9), involved in immune recruitment during injury, by enzyme-linked immunosorbent assay (ELISA) and immunostaining. We next used this model to identify substances able to mitigate the effects of 5G irradiation, through the evaluation of the influence of treatment by one of several botanical extracts on the observed effects of 5G irradiation. RESULTS: After a remarkably short 1-h exposure, clear effects on keratinocyte function were observed: increased inflammatory cytokine IL1-α; reduced collagenase inhibitor TIMP1; increased wound healing/differentiation facilitator ANGPLT4; and increased SA100A9, involved in immune recruitment during injury. On this basis, we then showed the protective effects of selected botanical extracts, capable of reducing the increase in IL1-α induced by 5G exposure, possibly in part due to anti-inflammatory and anti-oxidant properties of compounds present in these extracts. CONCLUSIONS: Our results show a clear influence of 5G irradiation on the keratinocytes, possibly indicating injury and damage responses. What's more, we showed how these preliminary data can be used to identify botanical extracts capable of offering some protection against these effects for users of 5G technology, e.g., when employed as active ingredients in protective cosmetic applications.


Assuntos
Queratinócitos , Pele , Humanos , Dados Preliminares , Queratinócitos/metabolismo , Citocinas/metabolismo , Técnicas de Cultura de Células
2.
Development ; 149(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35132436

RESUMO

The pectoral fins of teleost fish are analogous structures to human forelimbs, and the developmental mechanisms directing their initial growth and patterning are conserved between fish and tetrapods. The forelimb vasculature is crucial for limb function, and it appears to play important roles during development by promoting development of other limb structures, but the steps leading to its formation are poorly understood. In this study, we use high-resolution imaging to document the stepwise assembly of the zebrafish pectoral fin vasculature. We show that fin vascular network formation is a stereotyped, choreographed process that begins with the growth of an initial vascular loop around the pectoral fin. This loop connects to the dorsal aorta to initiate pectoral vascular circulation. Pectoral fin vascular development continues with concurrent formation of three elaborate vascular plexuses, one in the distal fin that develops into the fin-ray vasculature and two near the base of the fin in association with the developing fin musculature. Our findings detail a complex, yet highly choreographed, series of steps involved in the development of a complete, functional, organ-specific vascular network.


Assuntos
Nadadeiras de Animais/anatomia & histologia , Nadadeiras de Animais/crescimento & desenvolvimento , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/crescimento & desenvolvimento , Animais
3.
Mar Drugs ; 20(2)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35200634

RESUMO

Glycation, and the resulting buildup of advanced glycation end products (AGEs), is recognized as a key driver of cumulative skin damage and skin aging. Dunaliella salina is a halophile microalga adapted to intense solar radiation through the production of carotenoids. We present a natural supercritical CO2 extract of Dunaliella salina rich in the colorless carotenoids phytoene and phytofluene. The extract exhibited antiglycation and anti-inflammatory activities in ex vivo testing, showing strongly reduced formation of N-ε-carboxy-methyl-lysine with exposure to methylglyoxal, reduced AGE receptor levels, and significantly reduced interleukins 6 and 8. In a placebo-controlled clinical study under intense solar exposure, the extract significantly reduced the skin's glycation scores and its sensitivity to histamine; key skin aging parameters were also significantly improved vs. placebo, including wrinkle counts and spots. These results demonstrate the value of this Dunaliella salina extract, rich in colorless carotenoids, as an antiglycative, anti-inflammatory, and antiaging active ingredient, including in high-irradiation contexts.


Assuntos
Anti-Inflamatórios/farmacologia , Produtos Biológicos/farmacologia , Microalgas/química , Envelhecimento da Pele/efeitos dos fármacos , Adulto , Método Duplo-Cego , Feminino , Produtos Finais de Glicação Avançada/efeitos dos fármacos , Histamina/metabolismo , Humanos , Pessoa de Meia-Idade
4.
J Toxicol ; 2018: 5475784, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29849613

RESUMO

The colorless carotenoids phytoene and phytofluene are comparatively understudied compounds found in common foods (e.g., tomatoes) and in human plasma, internal tissues, and skin. Being naturally present in common foods, their intake at dietary levels is not expected to present a safety concern. However, since the interest in these compounds in the context of many applications is expanding, it is important to conduct studies aimed at assessing their safety. We present here results of in vitro cytotoxicity and genotoxicity studies, revealing no significant cytotoxic or genotoxic potential and of short- and long-term human in vivo skin compatibility studies with phytoene- and phytofluene-rich tomato and Dunaliella salina alga extracts, showing a lack of irritancy or sensitization reactions. These results support the safe use of phytoene- and phytofluene-rich products in human topical applications.

5.
Arterioscler Thromb Vasc Biol ; 38(2): 353-362, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29284606

RESUMO

OBJECTIVE: The assembly of a functional vascular system requires a coordinated and dynamic transition from activation to maturation. High vascular endothelial growth factor activity promotes activation, including junction destabilization and cell motility. Maturation involves junctional stabilization and formation of a functional endothelial barrier. The identity and mechanism of action of prostabilization signals are still mostly unknown. Bone morphogenetic protein receptors and their ligands have important functions during embryonic vessel assembly and maturation. Previous work has suggested a role for growth differentiation factor 6 (GDF6; bone morphogenetic protein 13) in vascular integrity although GDF6's mechanism of action was not clear. Therefore, we sought to further explore the requirement for GDF6 in vascular stabilization. APPROACH AND RESULTS: We investigated the role of GDF6 in promoting endothelial vascular integrity in vivo in zebrafish and in cultured human umbilical vein endothelial cells in vitro. We report that GDF6 promotes vascular integrity by counteracting vascular endothelial growth factor activity. GDF6-deficient endothelium has increased vascular endothelial growth factor signaling, increased vascular endothelial-cadherin Y658 phosphorylation, vascular endothelial-cadherin delocalization from cell-cell interfaces, and weakened endothelial cell adherence junctions that become prone to vascular leak. CONCLUSIONS: Our results suggest that GDF6 promotes vascular stabilization by restraining vascular endothelial growth factor signaling. Understanding how GDF6 affects vascular integrity may help to provide insights into hemorrhage and associated vascular pathologies in humans.


Assuntos
Permeabilidade Capilar , Embrião não Mamífero/irrigação sanguínea , Células Endoteliais/metabolismo , Fator 6 de Diferenciação de Crescimento/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Fator 6 de Diferenciação de Crescimento/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neovascularização Fisiológica , Fosforilação , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
6.
Neural Dev ; 8: 12, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23777568

RESUMO

BACKGROUND: The neural crest (NC) is a transient embryonic structure unique to vertebrates, which generates peripheral sensory and autonomic neurons, glia, neuroendocrine chromaffin and thyroid C-cells, melanocytes, and mesenchymal derivatives such as parts of the skull, heart, and meninges. The sympathoadrenal (SA) cell lineage is one major sub-lineage of the NC that gives rise to sympathetic neurons, chromaffin cells, and the intermediate small intensely fluorescent (SIF) cells. A key question is when during NC ontogeny do multipotent progenitors segregate into the different NC-derived lineages. Recent evidence suggested that sympathetic, sensory, and melanocyte progenitors delaminate from the thoracic neural tube (NT) in successive, largely non-overlapping waves and that at least certain NC progenitors are already fate-restricted within the NT. Whether sympathetic neurons and chromaffin cells, suggested by cell culture studies to share a common progenitor, are also fate segregated in ovo prior to emigration, is not known. RESULTS: We have conducted single cell electroporations of a GFP-encoding plasmid into the dorsal midline of E2 chick NTs at the adrenomedullary level of the NC. Analysis of their derivatives, performed at E6, revealed that in most cases, labelled progeny was detected in both sympathetic ganglia and adrenal glands, where cells co-expressed characteristic marker combinations. CONCLUSIONS: Our results show that sympathetic neurons and adrenal chromaffin cells share a common progenitor in the NT. Together with previous findings we suggest that phenotypic diversification of these sublineages is likely to occur after delamination from the NT and prior to target encounter.


Assuntos
Células Cromafins/citologia , Gânglios Simpáticos/citologia , Crista Neural/citologia , Células-Tronco/citologia , Sistema Nervoso Simpático/embriologia , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Embrião de Galinha , Galinhas , Crista Neural/embriologia
7.
Development ; 140(11): 2269-79, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23615280

RESUMO

Understanding when and how multipotent progenitors segregate into diverse fates is a key question during embryonic development. The neural crest (NC) is an exemplary model system with which to investigate the dynamics of progenitor cell specification, as it generates a multitude of derivatives. Based on 'in ovo' lineage analysis, we previously suggested an early fate restriction of premigratory trunk NC to generate neural versus melanogenic fates, yet the timing of fate segregation and the underlying mechanisms remained unknown. Analysis of progenitors expressing a Foxd3 reporter reveals that prospective melanoblasts downregulate Foxd3 and have already segregated from neural lineages before emigration. When this downregulation is prevented, late-emigrating avian precursors fail to upregulate the melanogenic markers Mitf and MC/1 and the guidance receptor Ednrb2, generating instead glial cells that express P0 and Fabp. In this context, Foxd3 lies downstream of Snail2 and Sox9, constituting a minimal network upstream of Mitf and Ednrb2 to link melanogenic specification with migration. Consistent with the gain-of-function data in avians, loss of Foxd3 function in mouse NC results in ectopic melanogenesis in the dorsal tube and sensory ganglia. Altogether, Foxd3 is part of a dynamically expressed gene network that is necessary and sufficient to regulate fate decisions in premigratory NC. Their timely downregulation in the dorsal neural tube is thus necessary for the switch between neural and melanocytic phases of NC development.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Melanócitos/metabolismo , Tubo Neural/embriologia , Tubo Neural/fisiologia , Neurônios/metabolismo , Proteínas Repressoras/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Embrião de Galinha , Melaninas/metabolismo , Camundongos , Fator de Transcrição Associado à Microftalmia/metabolismo , Microscopia de Fluorescência , Receptor de Endotelina B/metabolismo , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição da Família Snail , Fatores de Tempo , Fatores de Transcrição/metabolismo
8.
Development ; 139(6): 1141-52, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22296847

RESUMO

The neural crest is a migratory, multipotent cell lineage that contributes to myriad tissues, including sensory neurons and glia of the dorsal root ganglia (DRG). To identify genes affecting cell fate specification in neural crest, we performed a forward genetic screen for mutations causing DRG deficiencies in zebrafish. This screen yielded a mutant lacking all DRG, which we named sensory deprived (sdp). We identified a total of four alleles of sdp, all of which possess lesions in the gene coding for reversion-inducing cysteine-rich protein containing Kazal motifs (Reck). Reck is an inhibitor of metalloproteinases previously shown to regulate cell motility. We found reck function to be both necessary for DRG formation and sufficient to rescue the sdp phenotype. reck is expressed in neural crest cells and is required in a cell-autonomous fashion for appropriate sensory neuron formation. In the absence of reck function, sensory neuron precursors fail to migrate to the position of the DRG, suggesting that this molecule is crucial for proper migration and differentiation.


Assuntos
Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Gânglios Espinais/embriologia , Metaloproteases/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Diferenciação Celular/genética , Movimento Celular/genética , Proteínas Ligadas por GPI/biossíntese , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Metaloproteases/biossíntese , Metaloproteases/metabolismo , Crista Neural/citologia , Crista Neural/metabolismo , Neurogênese , Polimorfismo de Nucleotídeo Único , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/biossíntese
9.
Dev Neurobiol ; 70(12): 796-812, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20683859

RESUMO

The dorsal neural tube first generates neural crest cells that exit the neural primordium following an epithelial-to-mesenchymal conversion to become sympathetic ganglia, Schwann cells, dorsal root sensory ganglia, and melanocytes of the skin. Following the end of crest emigration, the dorsal midline of the neural tube becomes the roof plate, a signaling center for the organization of dorsal neuronal cell types. Recent lineage analysis performed before the onset of crest delamination revealed that the dorsal tube is a highly dynamic region sequentially traversed by fate-restricted crest progenitors. Furthermore, prospective roof plate cells were shown to originate ventral to presumptive crest and to progressively relocate dorsalward to occupy their definitive midline position following crest delamination. These data raise important questions regarding the mechanisms of cell emigration in relation to fate acquisition, and suggest the possibility that spatial and/or temporal information in the dorsal neural tube determines initial segregation of neural crest cells into their derivatives. In addition, they emphasize the need to address what controls the end of neural crest production and consequent roof plate formation, a fundamental issue for understanding the separation between central and peripheral lineages during development of the nervous system.


Assuntos
Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Gânglios Espinais/citologia , Crista Neural/citologia , Tubo Neural/citologia , Neurônios/fisiologia , Animais , Gânglios Espinais/crescimento & desenvolvimento , Humanos , Modelos Neurológicos , Crista Neural/crescimento & desenvolvimento , Tubo Neural/crescimento & desenvolvimento
10.
Development ; 137(4): 585-95, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20110324

RESUMO

Colonization of trunk neural crest derivatives in avians follows a ventral to dorsal order beginning with sympathetic ganglia, Schwann cells, sensory ganglia and finally melanocytes. Continuous crest emigration underlies this process, which is accounted for by a progressive ventral to dorsal relocation of neural tube progenitors prior to departure. This causes a gradual narrowing of FoxD3, Sox9 and Snail2 expression domains in the dorsal tube that characterize the neural progenitors of the crest and these genes are no longer transcribed by the time melanoblasts begin emigrating. Consistently, the final localization of crest cells can be predicted from their relative ventrodorsal position within the premigratory domain or by their time of delamination. Thus, a dynamic spatiotemporal fate map of crest derivatives exists in the dorsal tube at flank levels of the axis with its midline region acting as a sink for the ordered ingression and departure of progenitors. Furthermore, discrete lineage analysis of the dorsal midline at progressive stages generated progeny in single rather than multiple derivatives, revealing early fate restrictions. Compatible with this notion, when early emigrating ;neural' progenitors were diverted into the lateral ;melanocytic' pathway, they still adopted neural traits, suggesting that initial fate acquisition is independent of the migratory environment and that the potential of crest cells prior to emigration is limited.


Assuntos
Embrião de Galinha/embriologia , Coturnix/embriologia , Crista Neural/embriologia , Animais , Animais Geneticamente Modificados , Padronização Corporal , Movimento Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Modelos Neurológicos , Crista Neural/citologia , Crista Neural/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...